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In English, “millet (s)” refers to a group of cereal grains. Millet is a staple grain in several impoverished
countries, as well as a part of many more prosperous countries’ traditional diets, and it is growing increasingly
popular across the world. It is a valuable source of dietary energy. Millet seeds are shown to have various
health-promoting properties as well as of their high calorie level. Millets have been utilized for both human
food and fodder for around 10,000 years. It thrives in dry, hot regions and produces small, seeded grasses.
While millets are a valuable source of protein, calories and minerals, there hasn’t been much research on the
potential of biotechnology to enhance millets. Researchers and scientists have conducted studies with
millets; here, we assess their nutritional value and write about how biotechnology can improve millet crops.
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ABSTRACT

medicinal characteristics, providing safeguards for
lifestyle-related health problems. On the other hand, the
existence of antinutritional variables demands cautious
thought. In India, biofortified millet genotypes have shown
promise in boosting micronutrient content and mitigating
malnutrition issues (Bhosle et al., 2024). Millets are
associated with several health advantages, such as
reducing the incidence of stroke and cardiovascular
disease, controlling blood sugar, promoting losing weight,
boosting digestion, boosting immunity, preventing cancer,
and reducing inflammation. Millets are a multipurpose
grain which may be eaten in many ways. They can be
popped like popcorn, pulverized into flour, or cooked
similarly to rice. Millets are a great way to supplement
any diet and improve your overall health. Sorghum (4.15
MT), pearl millet (9.78 MT), finger millet (1.70 MT), and
tiny millets (0.36 MT) are among the millet varieties
produced in India in 2021–2022. We show the challenges
of Popularizing Millets in Fig. 1. Now, policymakers,

Introduction
Millets, noted for their tenacity and plasticity, provide

both potential and problems during processing,
necessitating inventive solutions. Millets are small-seeded
grasses from the Poaceae family (Hassan et al., 2021).
Nonetheless, underappreciated millets—which have been
predicted to become future cereal grains—may flourish
in these marginal regions because they can endure the
hard soil and environmental circumstances (Rodríguez,
Rahman, Thushar and Singh, 2020). According to
estimates, over two billion people would be needed globally
by 2050 to provide food security, with the majority of
output coming from millet grains that are climate-resilient
(FAO, 2021). Millets are referred to be “the nutri-cereals
of today, and the coarse grains of yesterday.” Their
nutritional composition, which includes high fiber, key
minerals, and antioxidants, helps greatly to a healthy diet.
The nutraceutical benefit of millets emphasizes their



marketers and producers must understand these
motivations in order to develop policies that successfully
encourage millet usage, eliminate barriers and boost
demand (Bhosle et al., 2024).

Small seeded cereals and forage grasses used as
food, feed and forage are referred to as “millet” or minor
cereals. The citizens of Africa, India, China, and Japan
all eat millets (Kothari et al., 2005). Millets are C4 crops
that are members of the Poaceae family and its
subfamilies, Panicoideae and Chloridoideae. Small
millets are renowned for their superior agronomic,
physiological, climate-resilient and nutritional qualities
while being cultivated in marginal locations (Vetriventhan
et al., 2020). The term “millets” refers to a broad category
of small-seeded annual C4 Panicoid grasses, including
foxtail millet (Setaria italic L.), pearl millet (Pennisetum
glaucum L.), finger millet (Elusine coracana), proso
millet (Paspalum miliaceum L.), kodo millet (Paspalum
scorbiculatum L.), bahiagras (Paspalum notatum L.),
little millet (Panicum miliare L.), guinea grass (Panicum
maximum L.), elephant grass (Pennisetum purpurium
L.) and barnyard millet (Echinochola crusgalli L.).
These grasses are all members of the monocotolydon
group (Arya et al., 2014). They are mostly planted on
poor and marginal soils in arid parts of temperate,
subtropical, and tropical regions of the world as food and
fodder crops (Dwivedi et al., 2012; Lata et al., 2013).
Millets are preferable to main cereal crops like rice and
wheat because they include substantial levels of calcium,
magnesium, dietary fiber, iron, and protein (Ceasar and
Ignacimuthu, 2009; Saha et al., 2006; Ragaee et al.,
2006). Globally, micronutrient deficiencies are
acknowledged as a major threat to human health (Kanatti
et al., 2014). Micro-nutrients like iron and zinc may be
found in finger millet (Eleusine coracana L. Gaerth.), a
highly self-pollinating crop (Ramakrishnan et al., 2016).
Compared to rice and wheat, millet has greater levels of
several macronutrients, minerals (such as iron, zinc,
phosphorus, calcium, and potassium) and vitamins (Saini
et al., 2021). By chelating cations, antinutrients such
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phytates, polyphenols and tannins decrease the
bioavailability of minerals (Ertop et al., 2017).
According to Sharma et al. (2017), millet has several
key natural qualities, including low glycemic index,
hypolipidemia, and antioxidant properties and other
benefits in the Fig. 2.
Nutritional Profile of Millets

“A bird that eats rice is frictionless; a tiger that
eats Jowar is strong; a nirogi that eats Ragi remains
nirogi,” goes an ancient proverb. Since gaining itsFig. 1 : Obstacles of Popularizing Millets.

independence, India has had remarkable growth in its
economy, education system, and pursuit of universal health
care, which has been a major objective since the writing
of the Indian Constitution. However, there is a growing
recognition of the need to switch to healthier, more
affordable, and easily accessible diets that include millets
in light of India’s growing malnutrition problem, which
includes both under-nutrition (deficits in vitamins, minerals,
and proteins) and over-nutrition (obesity, metabolic
syndrome and lifestyle diseases) (Abbasi et al., 2018).
When it comes to nutrition, millets are on par with
traditional cereals, often even better in terms of calorie
value, amount of protein, and macronutrient compositions.
They are important components of diets for both humans
and animals because they include high quantities of
calories, calcium, iron, zinc, fats and protein of excellent
quality. Additionally, millets are a great source of vitamins
and dietary fiber (Hassan et al., 2021). Please refer to
the following review papers for further information on
the nutritional value and composition of the main millet’s
crops (Sharma et al., 2021; Bhatt et al., 2022; Tripathi et
al., 2023; Goswami et al., 2024; Teklu et al., 2024). The
features of the major crops of Millets are given in the
Table 1.

Pearl millet, is a significant millet that is cultivated in
tropical and semi-arid areas of the globe. The nutritional
value of its protein is significantly influenced by the

Fig. 2 : Different benefits of Millet crops.



Nutritional Significance and Biotechnology based Improvement of Key Millet Crops 727

makeup of its amino acids. According to Bhosle et al.
(2024), it has a low glycemic index, is lower in starch,
contains lots of energy and is free from gluten. 360
calories, 12 grams of protein, 5 grams of fat, 1 gram of
fiber, 67 grams of carbs, 42 milligrams of calcium, 242
milligrams of phosphorus, and 8 milligrams of iron are
found in 100 grams of bajra (Bhosle et al., 2024). Grain
packed with nutrients, finger millet has an elevated fiber,
protein, and carbohydrate content. It has 65.5% starch,
11.5% non-starchy polysaccharides, 1.04% free sugars,
and 11.5% dietary fiber. At 52%, finger millet has a
greater protein level than pearl millet and sorghum.
Additionally, it provides an excellent supply of the sulfur-
containing amino acids cystine and methionine, that are
less common in other grains (Vagdevi et al., 2023). And
the different amino acid profiles of major three millets
are given in the Table 2. According to Gopalan et al.
(2009), finger millet includes a high calcium concentration
(344 mg%), eight times greater iron and phosphorus as
pearl millet (3.9 mg%), as well as trace elements and
vitamins. Foxtail millet has a decent quantity of calcium
(31 mg/100 g) and phosphorus (290 mg/100 g). It also
includes important amino acids (mg/g of N): arginine (220),
histidine (130), lysine (140), tryptophan (60), phenyl
alanine (420), methionine (180), cystine (100), threonine
(190), leucine (1040), isoleucine (480), and valine. It
additionally serves as a great supply of vitamins (mg per
100 g), Thiamin (0.59), Niacin (3.2), Riboflavin (0.11),
Vitamin A (32), Folic Acid (15), Vitamin B5 (0.82), and
Vitamin B6 (31) (NIN, 2007).

It is essential to control key crop ideotypes in order
to increase agricultural productivity and prevent global
food insecurity. Additionally, millets can benefit from
biotechnology by being more resistant to biotic and abiotic
stressors and having higher nutritional value. Lata (2015)
provided an overview of several omics approaches and
how they are used in abiotic stress studies on three major
millet crops: finger, pearl and foxtail millet. One of the
major staple food crops cultivated worldwide, millets are
a varied collection of small-grained cereals (Singh and
Sharma, 2018). Millions of people in the developing nations
of Asia and Africa mostly rely on millets as a source of
nutrition. Small-seeded cereal crops known as millets are
a vital source of basic food for people. Millet is a valuable
source of plant genetic resources for agriculture due to
its unique qualities, which include its capacity to adapt to
harsh climatic conditions, low demand for agro-inputs,
and outstanding nutritional quality (Gupta et al., 2017).

Millet is utilized all around the world for making cereal
porridges, hard beverages, noodles, and healthy soups
due to its high nutritional content (Asrani et al., 2022).
This review project was started in order to compile the
biotechnological research for the enhancement of main
millets production, taking into account these many health
advantages. In addition to conventional methods, a variety
of biotechnological techniques, including transgenic
approaches, molecular tools, genomic research and
genetic changes, can aid in its genetic improvement.
These contemporary methods have great promise and
are now getting a lot of traction due to their high likelihood
of improving the accuracy and efficiency of traditional
breeding. To mitigate the effects of a changing climate,
more work needs to be put into developing and applying
novel biotechnological techniques like genotyping-by-
sequencing (GBS), genomic selection tools, and the
development of marker-trait associations. This will speed
up the process of achieving genetic gains targets and
improve pearl millet breeding efficiency (Kumar et al.,
2016; Ambawat et al., 2020; Ajeesh Krishna et al., 2022).
Biotechnological based research on Millets crops
Pearl Millet (Pennisetum glaucum L.)

Table 1 : Three Major crops of Millets.

Millets name References

Finger millet Sarita et al. (2016)

Pearl millet Akinola et al. (2017),
Ganguly et al. (2019)

Foxtail millet Yang et al. (2020),
Ren et al. (2016)

Features of the Key Crops of Millets

Soft tissue injury is reduced and the healing process is facilitated. Reduces the
risk of cardiovascular disease by lowering plasma triglycerides.

The gluten-free nature of pearl millet helps prevent celiac disease.
Shigella-induced pathogenicity is inhibited, enhancing the immune system.

Foxtail millet lowers the chance of colon cancer. lower cholesterol and have anti-
diabetic properties. Reduces the harm that ethanol causes to the liver.

Table 2 : The different Amino acid profiles of major three
millets.

Amino acid Pearl Finger Foxtail
(g/100g) Millet Millet Millet

Leusine 14.1 10.8 13.60
Isoleucine 5.1 4.3 4.59
Methionine 1.0 2.9 3.06
Phenylalanine 7.6 6.0 6.27
Valine 4.2 6.3 5.81
Threonine 3.3 4.3 3.68

Source: doi: 10.20944/preprints202401. 0253.v1
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A C4 grass with high cross-pollination (2n = 2x =
14), pearl millet (P. glaucum L.) R. Br., syn. (Cenchrus
americanus L.) (Morrone) has the capacity to produce
biomass and has a great photosynthetic efficiency
(Varshney et al., 2017). In the dry and semiarid ecologies
of Sub-Saharan Africa and South Asia, where
temperatures are high and irregular rainfall is a problem,
P. glaucum is a significant cereal crop. Due to its short
development phases, rapid growth and high photosynthetic
efficiency, it is a crop that thrives in shorter growing
seasons and is able to tolerate harsh circumstances. It
also has an inherent adaptability to low fertility soils (Yadav
and Rai, 2013; Serba et al., 2020). In Canada, North
Africa, the United States, Mexico, Central Asia and
Brazil, pearl millet is emerging as a significant crop for
feed, relay crop, fodder and food. Pearl millet is significant
due to its nutrient-rich grains for human consumption, as
well as dry and green forage for cattle (Rai et al., 2008).
Pearl millet is an agronomically strong crop with a great
nutritional profile and high abiotic stress tolerance
(Satyavathi et al., 2021). Pearl millet can blossom at
420C, grow in 250 mM NaCl, and yield grain with as little
as 250 mm of precipitation (Gupta et al., 2015).

Notwithstanding these qualities, pearl millet is
sometimes regarded as an orphan crop since its research
and development progress is less advanced than that of
other staple crops (Bani et al., 2022; Srivastava et al.,
2022; Shrestha et al., 2023). Considerable study has been
done on pearl millet since its genome was sequenced in
2017 (Varshney et al., 2017). Understanding pearl millet’s
physiological and molecular responses to abiotic stressors
has been the focus of several research initiatives (Fritsche-
Neto et al., 2012). By clustering changes in physiological
traits, such as CC and RWC associated with gene
expression, Shinde et al. (2023) examined for genes
regulating physiological changes, like as chlorophyll content
(CC) and relative water content (RWC), in response to
abiotic stress using “weighted gene co-expression
network analysis” (WGCNA). The relationships between
genes and characteristics were characterized as modules,
with each module being identified by a separate color
name. Genes exhibiting comparable expression patterns
and a propensity for co-regulation and functional
relatedness are grouped together as modules. The studied
genotype Tift 23D2B1-P1-P5 has a draft complete
genome sequence of around 1.79 Gb, which includes an
estimated 38,579 genes, according to Varshney et al.
(2017). Varshney et al. (2017) re-sequenced and
examined 994 pearl millet lines, enabling knowledge of
population structure, genetic diversity and domestication.
Use of these resequencing data allows for marker trait

relationships for genomic selection, to identify heterotic
pools, and to predict hybrid performance. Senthilvel et
al. (2008) showed the possibility of EST-derived SSR
primer pairs in pearl millet. As stated for other crops,
EST-derived SSRs provide a cost-effective marker
development option in pearl millet. Highlighted the
significant enhancement for wax biosynthesis genes, that
might contribute to heat and drought tolerance in this crop.
Pearl millet researchers now have access to a substantial
number of valuable SSRs in addition to the approximately
100 genomic SSRs that had previously been accessible
because to the resources produced in this work.
Animasaun et al. (2015) used Inter-Simple Sequence
Repeat markers to perform Polymerase Chain Reaction
after extracting genomic DNA from each accession.
MEGA 4.0 software was used to examine the data for
genetic diversity. 48 loci with 410 bands overall and
56.25% polymorphism were produced. Three primary
axes contributed considerably (70.20%) to the reported
variances, according to a primary Coordinates analysis.
Finger millet (Elusine coracana L.)

The finger millet (E. coracana L.) (Gaertn.), also
called Mandua or Ragi in India, is a significant food crop
that is extensively grown throughout the world’s arid and
semiarid regions, particularly in East Africa, India and
other Asian nations (Subastri et al., 2015). The Poaceae
family includes the finger millet subspecies coracana,
which is thought to belong to a native crop of Central
Africa (Upadhyaya et al., 2011). Tetraploid (2n=4x=36),
the cultivated finger millet has morphological
characteristics with E. indica (2n=18) and E. africana
(2n=36). Globally, micronutrient deficiencies are
acknowledged as a major threat to human health (Kanatti
et al., 2014). According to Dida et al. (2008), finger millet
(E. coracana L.) was domesticated in India around 3,000
years ago and is divided into two subspecies: africana
and coracana (Dida and Devos, 2006). One crop that
farmers grow in the semiarid tropical regions of India
and Africa is finger millet, which is highly significant from
a socioeconomic standpoint on a global scale (Krishna et
al., 2020). Eight percent of the world’s millets are
produced, and eleven percent of those are finger millet
(Bennetzen et al., 2003). According to Ramakrishnan et
al. (2016), finger millet is a largely self-pollinating crop
that is a good supplier of micronutrients including iron
and zinc. Calcium (0.38%), dietary fiber (18%) and
phenolic compounds (0.3–3%) are present in finger millet.
Finger millets are rich in antioxidants, antimicrobials, anti-
tumorigenic, anti-diabetic and atherosclerogenic
characteristics (Sarita, 2016).
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One of the most important responsibilities of the
current plant breeding initiatives is sustainable agricultural
development. While traditional plant breeding techniques
have increased food yields, they are not without
restrictions. Tools and procedures based on genetic
engineering and molecular marker-assisted breeding,
which are more focused and need less time are
recommended in such a situation. Some of the transgenics
created in finger millet for agricultural enhancement were
covered by Mundada et al. (2021). Through the use of
sequence variations for nutritional attributes from other
cereals and resistance gene homologues of rice for blast,
comparative genomics has opened the road for marker-
assisted selection. A basic knowledge of dietary variation,
drought tolerance and salinity tolerance has been provided
by transcriptomics research. However, little is known
about the genetics of many significant finger millet
features, necessitating rigorous research by biologists
from several fields. The finger millet genome decoded
by Sood et al. (2019) will allow candidate genes for
nutritional and agronomically significant features to be
identified. In the near future, advancements in genome
assembly, genomic selection, and genome editing will yield
a wealth of data and opportunities for comprehending
the genetics of intricate features.

In order to decipher the molecular mechanisms of
entire finger millet systems under various conditions, new
opportunities were presented by the analysis of
transcriptome/RNA-seq data generated by various high-
throughput sequencing platforms and their integration
through systems biology. These opportunities included the
identification of key genes involved in drought stress,
growth and development, disease resistance, synthesis
of bioactive compounds, proteins, carbohydrate and Ca
accumulation, and so forth. The fundamentals of finger
millet transcriptome analysis, from data creation to data
analysis, are emphasized by Pathak et al. (2022). High
throughput platforms and multi-layered “Omics”
techniques have recently been employed to identify the
genes and proteins involved in various metabolic and
signaling pathways and their regulatory mechanisms in
order to gain insight into the molecular genetics of
biosynthesis and biomolecule homeostasis in numerous
model organisms, including rice and Arabidopsis. On the
other hand, virtually little knowledge on the molecular
biology of seed development in FM exists in the scientific
community.

To better comprehend the intricacies of seed
developmental biology and nutrient partitioning, multi-
omics data may be combined with systems biology. This
knowledge may be applied to enhance physiologically

necessary compounds for the large-scale production of
nutrients in seeds and nutraceuticals by route engineering
and biotechnology (Kumar et al., 2022). Proteomics,
metabolomics, transcriptomics, and genomes are
examples of omics methods that have gained importance
recently in the study of finger millets’ ability to withstand
abiotic stress. With the use of an omics-based method,
Panda et al. (2022) provided insight into the advancement
and potential of genetic modification in creating finger
millet genotypes that are resistant to abiotic stress. In
order to address the issues of FM production in the face
of climate change, Wambi et al. (2019) offered a thorough
review of the FM genetic and genomic resources-aided
treatments that might support the three pillars of Climate-
smart agriculture (CSA). Moreover, it provided very rich
data on other valuable sources of variation found in FM
genetic resources that have been selected to increase
FM resistance to a range of climate-related stressors. In
particular, second-generation genomic biotechnologies
(e.g., TILLING and Eco TILLING) that are lacking and
have not gotten much attention were compared with
genome-wide technologies like genomic selection (GS),
gene pyramiding, and gene expression. In order to provide
a thorough understanding of promising concepts for finger
millet breeding, Mbinda and Masaki (2021) examined the
breeding strategies currently being used to improve
resistance to disease and discussed potential future
directions toward the development of new blast-resistant
finger millet varieties. Realistic instances demonstrating
the application of sophisticated molecular techniques to
the development of durably blast-resistant cultivars are
also included in the paper. The methods described here
are high-throughput, reasonably priced approaches that
drastically shorten the generation cycle and speed up
research and breeding initiatives. They offer a substitute
for traditional breeding methods in the quick introduction
of disease resistance genes into susceptible,
advantageous cultivars.
Foxtail millet (Setaria italica L.)

A valuable crop for food and fodder in dry areas,
Setaria italica L. as a member of the Poaceae family
and has the potential to be used for C4 biofuel. According
to Zhang et al. (2012), it serves as a model system for
additional biofuel grasses like pearl millet and switchgrass.
Most Asian nations, particularly northern China, utilize
this as an ancient crop for food, feed and forage. Because
of the crop’s well-known innate tolerance to drought, it is
typically planted in dry, hilly regions with limited soil.
Furthermore, diabetics have been advised to eat foxtail
millet (Wang et al., 2011). A significant small-scale crop
that has been grown for millennia worldwide is foxtail



millet. It is a vital staple meal to millions of people and
ranks second in the world’s total millet output. About 90%
of the land in India is under cultivation of foxtail millet,
with the three main growing states being Andhra Pradesh,
Karnataka and Tamil Nadu (Makwana et al., 2023).
Cultivated from the wild species green foxtail (S. viridis)
more than 8000 years ago, it has close ancestry with
numerous important feeds, bioenergy and food grasses
such as sugarcane, maize, sorghum and switchgrass. Due
to its tiny size and the recent sequencing and annotation
of its small diploid genome (Bennetzen et al., 2012; Jia et
al., 2013), it has become increasingly popular as an
instance for C4 plants. Recombinant haplotype stacking
and screening in fixed genetic backgrounds are
accelerated by doubled haploid (DH) technologies
(Jacquier et al., 2020). Cheng et al. (2021) showed that
only knocking out SiMTL can induce haploid induction in
foxtail millet. The predict that HIR may be enhanced by
establishing simtl lines with various genetic histories or in
conjunction with altering additional genes via the
CRISPR-Cas9 technique in foxtail millet, as various
inducer lines have varying HIR learned from maize
(Jacquier et al., 2020).

Lata et al. (2014) used a group of 122 foxtail
accessions, 45 of which were examined in a previous
study, to confirm this allele-specific marker (ASM). The
SiDREB2 QTL was responsible for approximately 20%
of the overall PV for relative water content (RWC),
indicating the significance of this QTL for foxtail millet’s
ability to withstand dehydration. The NAC (NAM, ATAF,
and CUC) transcription factors unique to plants have a
variety of roles in the control of stress and development.
Puranik et al. (2013) discovered a transcript known as
SiNAC, which encodes the NAC protein, in a salt stress
subtractive cDNA library of S. italica seedlings.
According to Puranik et al. (2013) there is evidence to
suggest that SiNAC encodes a membrane-associated
NAC-domain protein, which could act both a
transcriptional activator in response to stress and
developmental control in plants. An Agrobacterium-
mediated transformation method for foxtail millet was
created by Wang et al. (2011). In this section researchers
describe the system’s optimization through enhanced
regeneration system effectiveness and improved gene
delivery circumstances. For the purpose of callus induction
and regeneration, immature inflorescence explants of
foxtail millet cv. Jigu 11 with lengths ranging from 0.5 to
1.0, 1.1 to 1.5, 1.6 to 2.0, and >2.0 cm were cultivated on
modified MS medium. By using blast analysis using
AtFPGS1/2/3 sequences of proteins, Zhang et al. (2022)
found Setaria italica FPGS2 (SiFPGS2) loci within foxtail

millet. SiFPGS2 belonged to the FPGS subfamily, had
the tetra-hydrofolypolyglutamate synthase domain and
could bind tetrahydrofolate (THF) as an alternative
substrate, according to the findings of phylogenetic tree
analysis, function of protein domain analysis, and docking
study. SiFPGS2 can be exploited as a potential gene for
genetically engineered folate biofortification in Gramineae
crops. Zhang et al. (2012) generated a 423 Mb draft
genome that was anchored to nine chromosomes and
identified 38,801 genes.
Present research status and future directions

In the last ten years, sorghum, pearl millet, foxtail
millet, and finger millet have all benefited from the
effective use of GWAS to discover the critical genes
governing growth, development, stress tolerance, nutrient
usage efficiency and nutritional quality attributes. But
development in other lesser millets is still in its early
stages. Genetic modification of climatic resistance,
photosynthesis, and accumulation of nutrients in rice and
wheat may be made possible by the genetic
deconstruction of these intricate features in millets. The
advancement of GWAS analysis in identifying QTLs
responsible for complex characteristics in sorghum and
other millets is emphasized by Vellaichamy et al. (2023).
Maurya et al. (2022) talked about the proteomic
developments and genomic techniques that are currently
accessible for examining the abiotic stress tolerance of
foxtail and pearl millet. A free, web-accessible, user-
friendly millets multi-omics database platform (Milletdb,
http://milletdb.novogene.com) has been developed. The
Milletdb contains six millets and their one related species
genome, graph-based pan-genomics of pearl millet and
stress-related multi-omics data, which enable Milletdb to
be the most complete millets multi-omics database
available. Milletdb can simplify the functional genomics
analysis of millets by providing users with 20 different
tools (e.g., ‘Gene mapping’, ‘Co-expression’, ‘KEGG/
GO Enrichment’ analysis, etc.). On the Milletdb platform,
a gene PMA1G03779.1 was identified through ‘GWAS’,
which has the potential to modulate yield and respond to
different environmental stresses. Sun et al. (2023)
discovered which the stress-related PLATZs TFs
(transcription factors) family grows in 87.5% of millet
accessions and contributes to vegetative development and
abiotic stress responses with Milletdb tools. Milletdb can
help researchers with crucial gene mining, genome editing,
and molecular breeding of millets. Raut et al. (2023)
investigated millet breeding improvements for improved
characteristics, developments in processing methods and
the influence of biotech and climate-smart farming
practices. In this instance, we provide them with further
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recent and significant articles that discuss the application
of biotechnology to improve the major millets crops
(Ceasar, 2022; Wilson and VanBuren, 2022; Shinde et
al., 2023; Ingle et al., 2023; Rouamba et al., 2024; Haq
et al., 2024; Jaiswal et al., 2024).

Conclusion
These technical and scientific advances provide

prospects for overcoming existing hurdles and expanding
millets’ position in global food systems. Also included are
case studies from several countries, notably India,
demonstrating successful millet planting projects,
integration into national food policy and community-led
activities. These examples provide useful insights into
practical strategies for promoting millets. It is anticipated
that in the near future, these high-throughput genotyping,
sequencing and phenotyping innovations will contribute
to better breeding techniques and higher-quality research
on minor millet crops in response to changing climatic
circumstances.
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